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Abstract 

 
In this paper Riccati and filter difference equations are obtained as an approximate solution to a reverse-time optimal control problem defining the set-

valued state estimator. In order to obtain a solution to the set-valued state estimation problem, the discrete-time system dynamics are modeled 
backwards in time. Also a new discrete time robust extended Kalman filter for uncertain systems with uncertainties are described in terms of sum 
quadratic constraints and integral quadratic constraints. The robust filter is an approximate set-valued state estimator which is robust in the sense that it 

can handle any uncertainties. A new approach through the re-organization of measurements is proposed to improve the efficiency of computation. A 
sufficient condition for the existence of a robust Kalman filter is derived. 
 

Index Terms - Time-varying system, Extended Kalman filters, robustness, Riccati Difference Equation. 
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1  INTRODUCTION 
 
The Kalman filter is most widely used methods for tracking 
and estimation due to its simplicity, optimality, tractability 
and robustness. However the application of the Kalman 
filter to non linear systems can be difficult. The most 
common approach is to use the extended Kalman filter 
which simply linearize  all non linear models [14] so that the 
traditional linear Kalman filter can be applied [6]. The 
problem of state estimation which includes filtering, 
prediction and smoothing has been one of the key research 
topics of control community. The Kalman filter, which 
addresses the minimization of the filtering error covariance, 
emerged as a major tool of state estimation in 1960’s and 
references therein. A Kalman filter is an optimal estimator i-
e it infers parameters of interest from indirect, inaccurate 
and uncertain observations. It is recursive so that new 
measurements can be processed as they arrive. The 
standard Kalman filtering assumes that the system model 
and the statistics of the noises are known exactly [2]. 
However, it may not be realistic in practice. When the 
uncertainty exists within the system parameters and/or the 
statistics of the noises, the performance of the standard 
Kalman filtering could be greatly degraded [7]. This has 
motivated many studies of robust filtering for systems with 
uncertainties [8]. The problem of robust estimation of 
systems with norm-bounded parameter uncertainties under 
the performance was first studied under the notion of 
guaranteed cost filtering. The problems of parameter and 
state estimation can be found in many fields of engineering 

and science. In modeling of real systems, it is not always 
possible to estimate all necessary system parameters only  

by knowledge of their physical base. In this case the 
parameters and states must be estimated by appropriate 
identification methods [3]. Many general analytical and 
experimental methods are suitable for identification of linear 
system, but in the case of nonlinear system we need to 
choose more sophisticated methods. The Kalman filter and 
its modifications are very suitable for methods of signal 
processing, optimization, system identification and 
parameter estimation [10]. The guaranteed cost filtering is 
concerned with the design of a filter to ensure an upper 
bound on the estimation error variances for all admissible 
parameter uncertainties. More research references on this 
topic can be found for uncertain continuous-time systems 
and uncertain discrete-time systems [1]. Necessary and 
sufficient condition for the existence of a robust quadratic 
filter is given in terms of two robust difference equations. 
The optimization of the filter involves searching for 
appropriate scaling parameters. The traditional system 
augmentation [6] can be applied to address the delay 
problem, which may result in a system of much higher 
dimension, especially when the delay is large. To improve 
the computational efficiency, we propose a new approach 
without resorting to system augmentation.  A number of 
state estimation techniques are available for both linear as 
well as nonlinear systems, of which the Kalman filter and its 
variants such as the extended Kalman filter (EKF) have 
found wide areas of application. In spite of their ease of 
implementation, Kalman filters are known to diverge in 
some cases under the influence of nonlinearities and 
uncertainties [2]. In order to overcome this problem, robust 
versions of the Kalman filter have been derived for various 
clauses of uncertainty description.  Among the many 
approaches developed for state estimation [13], the set 
membership state estimation approach of [9] provides a 
deterministic interpretation of the Kalman filter in terms of a 
set-valued state estimator. The set-valued state estimation 
problem involves finding the set of all states consistent with 
given output measurements for a time-varying system with 
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norm bounded noise input. Also we extended the set 
membership state estimation approach in order to 
accommodate linear uncertain continuous systems with an 
integral quadratic constraint. A majority of the state 
estimation methods used in practical engineering problems 
are based on the use of discrete-time processes and 
measurements owing to the use of digital sensors and 
digital signal processing. This has motivated continued 
efforts in the literature directed towards developing suitable 
linear as well as nonlinear filters for discrete time systems.  

 
In this paper we describe the problem formulation of the 
reverse-time discrete-time nonlinear uncertain system and 
introduce the concept of set-valued state estimation which 
is based on sum quadratic constraint and integral quadratic 
constraints in Section 2. This set-valued state estimation 
problem is then expressed in terms of corresponding 
optimal control problems which are discussed in Section 3. 
Section 4 and 5 provides an approximate solution to the 
optimal control problem which leads to the Riccati and filter 
difference equations that define the discrete-time robust 
extended Kalman filter. The feasibility and convergence are 
reached through algebraic Riccati equation. The sufficient 
condition for the uncertain systems is also derived through 
algebraic and filter difference equations. We provide the 
simulation results in Section 6 and Section 7 concludes the 
paper. 
 

2 PROBLEM FORMULATION 
 
We consider a reverse-time discrete-time uncertain 
nonlinear system which is derived from a forward-time 
uncertain nonlinear system. The uncertainties in the 
discrete-time non linear system are described by a sum 
quadratic constraint, which is derived from the 
corresponding continuous-time uncertainty description in 
the form of an integral quadratic constraint. Furthermore, 
the concept of set-valued state estimation is introduced in 
the form of difference equation which is related to a 
corresponding optimal control problem. 

 
2.1 Reverse-Time Discrete-Time Uncertain Nonlinear 
System: 
We begin with a forward-time continuous-time uncertain 
nonlinear system of the form 
 

  ̇( )    (   ( )  ( ))    ( ) ( ) 

  ( )    (   ( )  ( )) 

  ( )    (   ( )  ( ))              (1) 

where  ( )     is the state estimation, ( )     is the known 

control input,  ( )     and  ( )     are the process and 
measurement uncertainty inputs respectively. Also  ( )     

is the uncertainty output and y( )     is the measured 
output. Now consider the nonlinear functions  
  ( )   ( )       ( )  and   ( ) is a matrix function. The 
uncertainty associated with system (1) can be described in 
terms of an integral quadratic constraint as defined as,  

 

( ( )    )
  ( ( )    )  ∫  ( ) 

 

 

  ( ) ( )

  ( )   ( ) ( )    

    ∫   ( )   

 

 

        ( ) 

Where     denotes the Euclidean norm.  ( ) is the initial 
state value and    is the nominal initial state value. Now we 
have to find a difference between initial state and the 
nominal initial state. This finite difference ( ( )    ) is 

allowed by a non-zero value of the output uncertainty  ( ) 
or the constant  .  If  ( )     and    ,  then  ( )    . 
Also,   (.)  and   (.) represent admissible uncertainties 
described by, 
           

                    [
 ( )
 ( )

]   (   ( ))                 (3)                                                                                                           

where  ( ) is a nonlinear time-varying dynamic uncertainty 

function and  ( ) represents the function  ( ) for all instants 
of time        . Also we can noted that  ( ) and  ( ) 
depend on  ( )  in (3) indicates that they are allowed to 
depend dynamically on the system state. Also, N = N

T
 > 0 is 

a matrix,        is a state vector,     is a given constant 

and   ( )   ( )  are given positive-definite, symmetric 
matrix functions of time.  In order to derive a discrete-time 
robust set-valued state estimator, it is necessary to obtain 
this continuous-time uncertain system. However, as 
mentioned in the introduction, the discrete-time set-valued 
state estimator is most straightforward to derive if this 
system is discretized in reverse-time rather than in forward-
time. This will lead to a nonlinear reverse- time discrete-
time uncertain system described by the state equations as, 
 

 ( )   (   (   )  ( ))   ( ) ( ) 
  

 (   )    (   (   )  ( )) 
 

  (   )     (   (   ))   (   )        (4) 

 
Where  ( )  ( ) and  ( ) represent discrete-time nonlinear 

functions and  ( ) is a given time-varying matrix. The 
uncertainty associated with the reverse-time discrete-time 
system (4) can be obtained by, 
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    (   )   (   (   )  ( ))   
 

and the admissible uncertainties  ( ) and  ( ) are 
described as 
 

[
 ( )

 (   )
]    (    ( ))          

            (6) 

and   ( ) is a nonlinear time-varying dynamic uncertainty 
function. The uncertain system (4), with the corresponding 
sum quadratic constraint uncertainty description (5) is used 
to derive the robust filter and Riccati equations, which 
define the discrete-time robust Extended Kalman Filter. 

 

3  OPTIMAL CONTROL PROBLEM 
 
Very recently, the control problem in [6] for a class of 
systems with both stochastic modeling uncertainty and 
deterministic modeling uncertainty is investigated, where 
the stochastic uncertainty has been expressed as a 
multiplicative noise. It should be pointed out that, compared 
to the control case, the corresponding robust filtering 
problem for systems with stochastic and deterministic 
uncertainties has gained much less attention. This situation 
motivates our present investigation that to carry in a 
dynamic modeling. As per the dynamic modeling consider 
  ( )   ( ) to be a fixed measured output and   ( )  
 ( ) a known control input for the uncertain system (4), (5), 
for           . The set-valued state estimation problem 

involves finding the set         ( )|     ( )  
 |    

   of all 
possible states  ( ) at time step T for the system in (4) with 
initial conditions and uncertainty constraints defined in (5) 
which is consistent with the measured output sequence 

  ( ) and input sequence  ( ), then the output 
sequence   ( ),  follows from the definition of,  
 

         ( )|    ( ) 
 |    

    
 

             ( )|    ( ) 
 |    

                               (7)                                                                                                                         
 

if and only if there exists an uncertain input sequence  ( )  
such that,        ( )    also the cost functional 

       ( )  is derived from the Sum Quadratic Constant (5) 
as [9] 
 
       ( ) ( ( )    )

   ( ( )    )    
  

∑( ( )   ( ) ( ) 

   

   

 

   (   )   (   ) (   )) 

      ∑‖ (   )‖ 

   

   

                                      ( )  

with  
 

 (   )     (   )   (   (   )    

 
            (   )   (   (   )   ( )).  

Here the vector  ( ) is the solution to the reverse-time 

discrete- time system (4), with input uncertainty  ( ) and 
terminal condition  ( )     . Hence 
 

        ( )|   
   ( )|   

      
 
                {                   ( )    }             ( )                                                                                                                                                                                                                              

                                                                     
The optimization problem 
 

       ( )  ( )
   

                                       (10)                                                                                                       

 
for the system (4), defines a nonlinear optimal control 
problem with a sign indefinite quadratic cost function. The 
discrete-time robust Extended Kalman Filter is derived by 
finding an approximate solution to this optimal control 
problem. 

 

4  DISCRETE-TIME EXTENDED KALMAN 
FILTER 
 
The corresponding discrete-time equation for this optimal 
control problem is given by, 
 

     
 ( (   ))      {   

   (   (   )   ( )) 

 
  ( ) ( )   ( ) ( )  
 
  ( )  ( ) ( ) 
 
   (   )  (   ) (   ) 
 
  (   )  (   )}                             (11) 
 
                             
with the initial condition 
 

  
 ( ( ))  ( ( )    )

  ( ( )    ) 
 
This is the point at which the linearization is performed 

corresponds to the current estimate  ̂( ) as in the case of 

the standard Extended Kalman Filter. Now substituting the 

linearized terms to the above equation, an approximate 

solution to this nonlinear difference equation is obtained as 

follows, 

 (   )  (   ) (   ) 

   (   )  (   ) ̂(   ) 

  ̂(   )  (   ) ̂(   )   (   ) 

  (   )  

     (   ̂( )   ( ))  ( )      (   ̂( )   ( )) 
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Comparing the left hand side terms with the right hand side 

of the above equations, the following recursive equations 

are obtained. 

4.1 Riccati Difference Equation 

 (   )   

    (   ̂( )   ( ))  ( )   (   ̂( )   ( ))  

     (   ̂( ))  (   )   (   ̂( ))  

      (   ̂( )   ( ))    (   ̂( )   ( ))      (13)                                                                                                                                                                      

Where  ( )   . 

This solution of the Riccati equation in a time invariant 
system converges to steady state (finite) covariance which 
is completely observable. Also we can get the filter state 
difference equation. 
 

4.2  Filter Difference Equation 

 ̂(   )   ̂( )   (   )                            (14)                                           

 ̂( )          

Where 

      (   ̂( )   ( ))  ( ) ̂( ) 

    (   ̂( )   ( ))  

 ( ) (   ̂( )   ( )) 

    (   ̂( ))  (   )  (   ) 

    (   ̂( ))  (   ) (   ̂( )) 

    (   ̂( )   ( ))  (   ̂( )   ( ))  

The Kalman filter is applied to a linearized version of these 
equations without loss of optimality. The estimate is refined 
by re-evaluating the filter around the new estimated state 
operating point. This refinement procedure is iterated until 
little extra improvement is obtained which is called an 
iterated EKF. 

 

5 FEASIBILITY AND CONVERGENCE 
ANALYSIS OF ROBUST FILTER 
 
The feasibility and convergence properties of the solutions 
of the RDE (Riccati Difference Equation) is associated with 
ARE (Algebraic Riccati Equation). The difference from the 
continuous time case and the discrete time case, the non-
existence of the robust Fillter over fnite horizon is no longer 
necessarily associated with the solution of the RDE and it’s 
becoming an unbounded solution. Hence the existence of 
the filter requires the fulfillment at each step of a suitable 
matrix inequality (feasibility condition). In such a case, we 
are introducing the sum quadratic constraint and integral 
quadratic constraint for finding the conditions relating to the 
initial state of uncertainty and the parameter  , under which 
we can ensure feasibility of the solutions of RDEs over an 
arbitrarily long time interval, and convergence towards the 
steady state robust Kalman filter in the form of Algebraic 
Riccati Equation [15]. 
  
 5.1 Feasible solution of a Kalman Filter  
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A real positive definite solution of    of RDE is termed a 
feasible solution of RDE (Riccati Difference Equation) that if 

it satisfies the condition   
           at each 

step        . It can be shown using monotonicity results on 
the algebraic Riccati equation that if a system is 

quadratically stable, then there exists an  ̅    such that for 
any     (    ̅, there exists a stabilizing solution to Algebraic 
Riccati Equation which leads to a convex optimization 
solution . 
 
The feasibility and convergence analysis to be studied can 
be stated as follows: Given an arbitrarily large N, suitable 

conditions on the initial state    such that the solutions 
   and    feasible solutions at every step         and 

   and    converge, respectively to the stabilizing 
solutions    and     as     .   
 
We shall now introduce two Lyapunov equations which is to 
lead a sufficient condition for existing feasibility and 
convergence of the solution of algebraic difference 
equation. The first one is,  
 

 ̂ 
    ̂                                                     (15)                                                                                                    

Where  ̂        (     
 

 
)

  

   

   ( ̂ 
  )

 
      (         

 )     ̂ 
         

and 

       
     

  (       
  )    

  .   

The definition of    is        , where    

  (    ) and the nonzero eigen values of    (the non 

zero eigenvalues of   ) are the positive and negative 

eigenvalues of M.   

The second Lyapunov equation is, 

 ̂ 
    ̂                                                  (16)                                                                                                      

where  ̂    (   ̂   ̂ ̂ )( ̂  ̂   ̂)
  

 ̂ ,  

   ( ̂ 
  )

 
[    ̂ ( ̂   ̂

   ̂)
  

 ̂]  ̂ 
      ,  

      
     

  (       
  )    

     

Let 

              (     )                                (17)                                                                                            

where     (     ) is the solution of Lyapunov equations 
(15)  and (16). Mi and      (     ) are known real matrices 
as defined in (15) and (16) in such case,    (     ) are 
positive semi definite. This is a sufficient condition for 
ensuring feasibility and convergence of the solutions of 

RDE over     ).  The solutions    of RDE and    of RDE 
(Riccati Difference Equation) are feasible over     ),  and 

converge to the stabilizing solutions    and    respectively. 
As      for a sufficiently small scalar     , the positive 

initial state  ̅  satisfies 
 

[
 ̅  

  ̅ 

]  [
   (     )   

    (     )  ]                                                                            

 
          (18) 
where   (     ) is defined as in (17). 
 
5.2 Convergence and feasible solutions of a 
challenging optimal control problem  
 
Now consider a Riccati filter difference equation for a 
given , the convergence and feasibility of    and    depend 

on the initial state covariance bound  ̅  and parameter  . 

Because  ̅   is usually given a priori, it is necessary to study 

the following problem: Given  ̅  > 0 and an obtained optimal 

     (   )̅ which minimizes   (     
) , is it possible to drive 

    and    from  ̅  > 0 to   (    )and   (    ) by means of a 

suitable time-varying function    ?  
 
In order to solve this problem, we shall apply a strategy 
which varies   according to a piecewise-constant pattern.  
We shall propose a methodology to find a sequence  
 

 [                     ]  
 

and a set of switching times                such that the 
solution    and     with 
 

   {
         (            )             
       (     )                                                 

                                                                                

                                                                               (19)  
 

are feasible and converge to   (    )  and    (    )   
respectively, and the minimum trace      

 is then obtained.  

In view of the above sufficient condition, we present the 

following algorithm for determining   -switching strategy.  
 

Step 1: Given a priori initial state   ̅    
     

      and let 

   . If  ̅     
     , then stop. 

 

Step 2: Let initial state be        
  and       

  , then find 
an    which satisfies (18) and minimizes |     −    |. Then the 

stable solutions   (  ) and   (  )  of ARE (Algebraic Riccati 
Equation) are obtained. 
 

Step 3: Let          ,      
  and ,      

  also iteratively 
compute   (  ) and   (  )  of RDE (Riccati difference 
equation) until they almost approach to stable solutions 

  (  ) and   (  ), respectively. We denote Pk(  ) and Sk(  ) 

at this instant as  ̂k(  ) and  ̂k(  ), respectively. 
 
Step 4: If        , then stop. Otherwise, go to Step 5. 
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Step 5: Let  ̂k(  ) and  ̂k(  ) be new initial states    
   and 

  
   , respectively and let      ,  then go to Step 2.  

 

The concepts behind the   switching strategy can be are as 

follows. If the initial covariance  ̅  is sufficiently small and 
satisfies (18), the optimal value      with minimum trace 

(     
) can be computed directly then the convergence and 

feasibility conditions are also  satisfied over     )  On the 

other hand, if the initial covariance  ̅  is very large, we 
cannot approach      immediately. So we must select a 

suitable        which satisfies (18) such that feasibility 

and convergence are guaranteed with this  ̅ . Then 
  (           ) could approach to       through a finite 

number of steps occurring at suitable instants. The 
selection of such instants and the changes in    must satisfy 
(18) and the   -switching algorithm at any time. This leads 
to the convergence and the feasibility condition of the 
uncertain systems. 
 

6 SIMULATION RESULTS 
 
When all necessary input fields are known and identification 
problem is feasible, then we can proceed through Matlab 
identification tool [4,7] . If the script reads all fields from 
input GUI then the non linear identification tool will 
automatically generates the functions for problem solving. 
Then the user defines inputs, real states, known constant 
parameters and unknown parameters to be estimated [12]. 
Initial values have to be set for all states and unknown 
parameters. The additional inputs are the weight matrices Q 
and R represents, which states have been measured and 
are included in the input data for identification (Fig 1). 
 

 
 

Fig 1. Non linear Identification model tool 

User defines text characters representing inputs  
(       ), states (     ) and values of known parameters 
are identified (Fig. 2) [5,11]. 
 
 

 
 
Fig 2 Input and State values 

 

Unknown parameters of Kalman gain (       ) which will be 
estimated into field estimate parameters (Fig. 3) i-e 
converted to known parameters. 
 

 
 
Fig 3 Initialization of unknown parameter 

 
Input data can be read form the weighted matrix Q and R 
(Fig 4). State inputs are converted the unknown 
uncertainties in to known certainties. This  leads the 
efficient computation.  
 
 
 

 
 
    Fig 4 Measured data from plant and weight matrices 

 

 

7 CONCLUSION 

In this paper an algebraic and Riccati difference equations 
are derived as an approximate set-valued state estimator 
solution, obtained from a corresponding optimal control 
problem. We have  analyzed the feasibility and 
convergence properties of such robust filters through sum 
quadratic constraints and integral quadratic constraints. A 
robust Extended Kalman Filter has been designed in this for 
the uncertain systems with a state estimation. We have 
reached the sufficient condition for robust Kalman filtering 
problem for uncertain systems with algebraic and Riccati 
difference equations. 
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